

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Synthetic Inorganic Ion Exchangers. XVI. Electrochromatographic Separations of Metal Ions on Zirconium Tungstate-Impregnated Paper

Anil K. De^a; Bata K. Pal^a

^a DEPARTMENT OF CHEMISTRY, VISVA-BHARATI, SANTINIKETAN, WEST BENGAL, INDIA

To cite this Article De, Anil K. and Pal, Bata K.(1980) 'Synthetic Inorganic Ion Exchangers. XVI. Electrochromatographic Separations of Metal Ions on Zirconium Tungstate-Impregnated Paper', *Separation Science and Technology*, 15: 2, 153 – 157

To link to this Article: DOI: 10.1080/01496398008056089

URL: <http://dx.doi.org/10.1080/01496398008056089>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

Synthetic Inorganic Ion Exchangers. XVI. Electrochromatographic Separations of Metal Ions on Zirconium Tungstate-Impregnated Paper

ANIL K. DE and BATA K. PAL

DEPARTMENT OF CHEMISTRY
VISVA-BHARATI
SANTINIKETAN 731235, WEST BENGAL, INDIA

Abstract

The electrochromatographic behavior of 25 metal ions on zirconium tungstate-impregnated papers is described. Six background electrolytes were used. On the basis of the differential mobilities of metal ions which depend on the ion-exchange properties of zirconium tungstate and the nature of complex formation with the electrolytes, some important binary and ternary separations have been achieved.

INTRODUCTION

Electrochromatography is a well-known analytical tool for the separation of metal ions (1). Inorganic ion exchangers have recently found remarkable application in analytical separations (2). The combination of these two techniques is expected to provide some interesting results. Some studies on electrochromatographic separation using inorganic ion exchanger-impregnated paper have been reported (3-7). These papers are highly selective, and excellent separations of metal ions can be achieved. Zirconium tungstate has been explored as an ion exchanger (8) but paper impregnated with this exchanger has not been studied. The present work summarizes our studies on electrochromatographic separations of metal ions using zirconium tungstate-impregnated paper. The results were compared with those on Whatman No. 1 paper as blank runs. On the basis of the ion-exchange properties of zirconium tungstate and the migration of metal ions under the electrical potential applied, some important separations are reported.

EXPERIMENTAL

Apparatus

Electrochromatographic work was done with an electrophoresis apparatus (Optronics, India, Model EPR 550).

Reagents

Zirconium oxychloride was supplied by Indian Rare Earths Ltd., India. All other reagents were of analytical grade (E. Merck/B.D.H.). Whatman No. 1 chromatographic paper (40×2.5 cm) was used for the electrochromatographic work.

Preparation of Ion-Exchange Papers

The paper strips (40×2.5 cm) were first soaked with 0.1 M zirconium oxychloride (in 0.1 M HNO_3) solution for about 30 sec, then the excess zirconium oxychloride solution was removed with blotting paper and the paper strips were dried at room temperature. The strips were again immersed in a 0.1-M sodium tungstate (at pH 3, adjusted with HNO_3) solution for about 30 sec. The excess solution was removed with blotting paper and dried at room temperature. After drying, the strips were washed with distilled water and finally dried at room temperature before being used as ion-exchange papers.

Cation Solutions

In general, the test solution had a metal concentration of 4 mg/mL (chloride/nitrate/sulfate). Bismuth nitrate solution was prepared in dilute nitric acid.

Detection Reagents

These are listed in Table 1.

Background Electrolytes

These are listed in Table 2.

TABLE I
Detection Reagents

Reagents	Cations detected
1. Yellow ammonium sulfide	Ag^+ , Tl^+ , Pb^{2+} , Hg^{2+} , Bi^{3+} , Pd^{2+}
2. Potassium ferrocyanide	Fe^{3+} , UO_2^{2+}
3. Rubeanic acid	Cu^{2+}
4. Dithizone	Cd^{2+} , As^{3+} , Zn^{2+}
5. Alkali and benzidine	Mn^{2+}
6. Benzidine	Ce^{4+} , Au^{3+}
7. Potassium iodide	Pt^{4+}
8. Dilute SnCl_2 and KI solution	Rh^{3+}
9. Dimethylglyoxime and ammonia	Ni^{2+}
10. 1-Nitroso-2-naphthol	Co^{2+}
11. Hydrogen peroxide	Ti^{3+}
12. Alkaline quinalizarin	Be^{2+} , Mg^{2+}

TABLE 2
Background Electrolytes

1. 0.001 <i>M</i> HNO_3
2. 0.05 <i>M</i> HCl + 0.09 <i>M</i> KCl (1:1)
3. 0.1 <i>M</i> HClO_4
4. 0.05 <i>M</i> citric acid
5. 0.1 <i>M</i> HNO_3 + 5% KNO_3 (1:1)
6. 0.1 <i>M</i> NH_4Cl

Procedure

The electrode and electrode vessels were washed with deionized water and dried. The base plate which contains electrode was kept in the horizontal position. Equal volumes of electrolyte were poured into these vessels. The paper strips were soaked with the corresponding electrolyte and the excess solution was removed with blotting paper. These sheets, which act as carriers, were placed in position in the cassette. Then the metal ions were applied separately in the middle of each strip with the help of a fine glass capillary. The cassette was then covered and a potential difference was applied for a fixed period. Then the sheets were dried and the spots were developed with the corresponding detecting agents. The distance of migration (in cm) was measured from the center of the paper to the center of the spots.

TABLE 3

Separations of Metal Ions on Zirconium Tungstate Papers by Electrochromatographic Technique (time: 2 hr)

Background electrolyte	Electrical potential applied (V)	Separation achieved
1. 0.001 M HNO ₃	200	1. Ni ²⁺ (-5.0)-Co ²⁺ (-7.2) 2. Fe ³⁺ (-0.2)-Pb ²⁺ (-2.0) 3. Ag ⁺ (0.0)-Tl ⁺ (-2.6) 4. Ag ⁺ (0.0)-Cu ²⁺ (-4.6) 5. UO ₂ ²⁺ (-1.0)-Mn ²⁺ (-4.0) 6. UO ₂ ²⁺ (-1.2)-Al ³⁺ (-5.0) 7. UO ₂ ²⁺ (-1.0)-Cd ²⁺ (-4.2) 8. Tl ⁺ (-2.1)-Ni ²⁺ (-5.2)-Co ²⁺ (-6.7)
2. 0.05 M HCl + 0.09 M KCl (1:1)	100	1. Pb ²⁺ (-0.5)-Ni ²⁺ (-2.8) 2. Pb ²⁺ (-0.5)-Mn ²⁺ (-3.2) 3. Pb ²⁺ (-0.2)-Zn ²⁺ (-2.2) 4. UO ₂ ²⁺ (-1.8)-Be ²⁺ (-3.2) 5. Pt ⁴⁺ (+1.5)-Pd ²⁺ (+3.5) 6. Fe ³⁺ (-0.5)-UO ₂ ²⁺ (-2.0) 7. Fe ³⁺ (-0.5)-Cu ²⁺ (-2.2)
3. 0.1 M HClO ₄	100	1. Bi ³⁺ (0.0)-Cd ²⁺ (-2.0) 2. Bi ³⁺ (0.0)-Fe ³⁺ (-2.8) 3. Bi ³⁺ (0.0)-Pb ²⁺ (-2.2) 4. Pb ²⁺ (-2.6)-Ni ²⁺ (-4.0) 5. Pb ²⁺ (-2.6)-Cu ²⁺ (-4.0) 6. UO ₂ ²⁺ (-3.0)-Cu ²⁺ (-4.2)
4. 0.05 M citric acid	200	1. Pb ²⁺ (-1.2)-Cu ²⁺ (-3.5) 2. Au ³⁺ (+0.5)-UO ₂ ²⁺ (-1.5) 3. Fe ³⁺ (-0.8)-Pd ²⁺ (+0.5)

RESULTS AND DISCUSSION

As a result of the electrochromatographic study of zirconium tungstate ion-exchange papers with the use of a suitable background electrolyte and the appropriate potential, a number of separations has been achieved.

The rates of movement of metal ions which are strongly adsorbed by zirconium tungstate exchangers, e.g., Bi³⁺, Pb²⁺, Tl⁺, and Fe³⁺ (8), are comparatively low. Thus these ions can be separated from numerous metal ions. The important separations are summarized in Table 3. Some difficult separations, e.g., Co²⁺-Ni²⁺, Ag⁺-Tl⁺, UO₂²⁺-Mn²⁺, Cu²⁺-Cd²⁺, Pb²⁺-Cu²⁺, Bi³⁺-Fe³⁺, and Au³⁺-UO₂²⁺, are easily achieved. Such separations are not possible on ordinary Whatman paper.

Acknowledgment

One of the authors (B.K.P.) is grateful to CSIR, New Delhi, India, for the award of a Junior Research Fellowship.

REFERENCES

1. R. J. Block, E. L. Durrum, and G. Zwieg, *A Manual of Paper Chromatography and Paper Electrophoresis*, 2nd ed., Academic, New York, 1958.
2. G. B. Amphlett, *Inorganic Ion Exchangers*, Elsevier, New York, 1964.
3. G. Alberti, *Chromatogr. Rev.*, 8, 246 (1966).
4. M. Qureshi, S. Z. Qureshi, J. P. Gupta, and H. S. Rathore, *Sep. Sci.*, 7(6), 615 (1972).
5. M. Qureshi, *Fifth International Symposium on Chromotography and Electrophoresis, Brussels, 1968*, p. 197.
6. M. Qureshi and A. H. Israili, *Anal. Chim. Acta*, 41, 523 (1968).
7. A. K. De and K. C. Chowdhury, *Sep. Sci.*, 10(1), 39 (1975).
8. A. K. De and N. D. Chowdhury, *Chromotographia*, 12, 448 (1979).

Received by editor May 1, 1979